New carbon capture and storage technology to be developed for heavy industry

industry

Multinational conglomerate, Honeywell, have announced an agreement with The University of Texas at Austin that will enable the lower-cost capture of carbon dioxide emissions from power plants and heavy industry.

Honeywell will leverage UT Austin’s proprietary advanced solvent technology to create a new offering targeted at power, steel, cement and other industrial plants to lower emissions generated from combustion flue gases in new or existing units. The solution provides these sectors with an additional tool to help meet regulatory requirements and sustainability goals.

Alongside Honeywell’s commitment to achieve carbon neutrality in its operations and facilities by 2035, this new carbon capture technology builds on the company’s track record of sharply reducing the greenhouse gas intensity of its operations and facilities as well as its decades-long history of innovation to help its customers meet their environmental and social goals. About half of Honeywell’s new product introduction research and development investment is directed toward products that improve environmental and social outcomes for customers.

The licensing arrangement with UT Austin expands Honeywell’s carbon capture technology portfolio. Today, 15 million tons per year of CO2 is being captured and used in storage or utilisation applications through Honeywell’s CO2 Solutions process expertise. Honeywell currently has the capacity to capture 40 million tons per year through its installed projects worldwide.

UT Austin’s patented solution utilises an advanced solvent, which enables carbon dioxide to be captured at a lower cost through greater efficiency using smaller equipment, creating viable project economics today under current CO2 policy frameworks in North America and Europe. For a typical power plant (650 MW capacity), applying advanced solvent carbon-capture technology would enable the capture of about 3.4 million tons of CO annually, equivalent to removing nearly 735,000 cars from the road each year.

This point source CO2 removal technology can be retrofitted within existing plants or included as part of a new installation. In this process, carbon dioxide is absorbed into an amine solvent and then sent to a stripper where CO2 is separated from the solvent. This CO2 is then compressed for geological sequestration or used for other purposes. With thousands of power and industrial plants around the world, the opportunity for significant emissions reduction is enormous.

“As the world proactively seeks technology solutions that limit greenhouse gas emissions, we recognise that carbon capture technology is an important lever available today to reduce emissions in carbon-intensive industries that have few alternative options, such as steel plants and fossil fuel power plants,” said Ben Owens, vice president and general manager, Honeywell Sustainable Technology Solutions. “By working with UT Austin, our advanced solvent carbon capture system will enable lower cost of CO2 captured post-combustion.

”UT Austin is a leader in carbon capture research, focusing in this area for more than 20 years through its Texas Carbon Management Program (TxCMP). Gary Rochelle, professor at the McKetta Department of Chemical Engineering and leader of TxCMP at UT Austin, and his team have established an efficient, second-generation amine scrubbing system through years of research and analysis. The improved performance from this solution can unlock project economics for ‘hard-to-abate’ industries such as steel, cement, and chemical plants, and coal, natural gas and bio-energy power plants.”

Rochelle said: “We are thrilled that our decades of research have led to carbon capture technology that can significantly reduce carbon emissions. The licensing agreement with Honeywell enables us to commercially scale this in ways that can make major contributions toward zero emissions efforts to address global warming and to reduce pollutants in surrounding communities.”

In 2020, carbon capture, utilization and storage (CCUS) projects worldwide were capturing and storing/using 40 million metric tons per year of carbon dioxide, according to the International Energy Agency (IEA). In order to align with the IEA Sustainable Development Scenario (SDS), which demonstrates a pathway to limit global temperature rise by less than 1.65 degrees Celsius, CCUS project capacity must increase more than 20 times to enable capture of 840 million metric tons per year of CO2 by 2030.

Read more of our news stories here!

Popular Right Now
Related Posts
Others have also viewed

Port Esbjerg to utilise green hydrogen to reduce CO2 emissions

Danish energy company, European Energy, has announced that it will soon start to deliver green ...
Ocean energy

EU’s offshore strategy must move up a gear, says Ocean Energy Europe

Time is running out for the EU to meet its 100 MW ocean energy deployment ...
electric vehicle charging

LG accelerates its electric vehicle charger solutions business

LG Electronics has announced the purchase of South Korean electric vehicle (EV) charger solutions provider, ...

RWE and ArcelorMittal to enable low-emissions steelmaking

Energy company RWE and steel producer ArcelorMittal have signed a memorandum of understanding to work ...