Scientists recover residual energy from waste batteries

battery

Researchers from Taiwan have discovered a way to recover the residual energy from waste batteries, opening the door to a circular economy for discarded batteries.

Alkaline and zinc-carbon batteries are common in many self-powered devices. However, once a battery is discharged, it is no longer usable and is discarded. According to estimates, nearly 15 billion batteries are produced and sold worldwide annually. Most of these end up in landfills and some are salvaged for valuable metals. However, although these batteries are not usable, there is usually a small amount of energy left in them. In fact, about half of them contain as much as 50 per cent energy.

Recently, a group of researchers from Taiwan investigated the feasibility of recovering this energy from single-use (or primary) discarded batteries. Led by Professor Chien-Hsing Lee from NCKU, Taiwan, the group focused its research efforts on this front to promote a circular economy for discarded batteries.

The researchers, in their study, proposed a new method called ‘self-adaptive pulse discharge’ (SAPD) that can be used to determine the optimal values of two key parameters – pulse frequency and duty cycle – that determine the discharge current from the discarded batteries. A high discharge current, simply put, amounts to a high amount of recovered energy.

“Draining small remaining energy from household batteries is a starting point for waste reduction, and the proposed energy recovery method serves as an effective tool to reutilise a large number of discarded primary batteries,“ said Professor Lee, explaining his motivation behind the study, which was published in Volume 69, Issue 6 of the journal IEEE Transactions on Industrial Electronics.

Additionally, the researchers built a hardware prototype for their proposed approach that was used to recover the remaining capacity of a battery bank capable of holding at least six and at most ten batteries of different brands. They managed to recover between 798-1455 joules of energy with a recovery efficiency between 33 per cent and 46 per cent.

For a discarded primary cell, the researchers found that the short-circuit discharge (SCD) method had the highest discharge rate at the beginning of the discharge cycle. However, the SAPD method showed a higher discharge rate at the end of the discharge cycle. By using the SCD and SAPD methods, the energy recovered were 32 per cent and 50 per cent, respectively. However, upon combining these methods, 54 per cent of energy was recovered.

To further validate the feasibility of the proposed method, a few discarded AA and AAA batteries were chosen for energy recovery. The team could successfully recover between 35 per cent and 41 per cent of the energy from discarded batteries. “While there seems to be no advantage in draining a small amount of energy from a single discarded battery, the recovered energy significantly increases if a large number of waste batteries are exploited,” highlighted Professor Lee.

The researchers suggest that there could be a direct link between the recovery efficiency and the remaining capacity of discarded batteries. As for the future implications of their work, Professor Lee speculated: “The model and the prototype developed can be applied to battery types other than AA and AAA. In addition to different types of single-use batteries, rechargeable batteries, such as lithium-ion batteries, can also be examined to provide more information about the variability among different batteries.”

Others have also viewed

UK’s energy supply needs over £900 billion investment to reach net zero by 2050

The UK’s energy supply could require more than £900 billion in capital expenditure to achieve ...

DFC and Shell Foundation to support distributed renewable energy solutions in emerging markets

The U.S. International Development Finance Corporation (DFC) and Shell Foundation, the U.K.-registered charity supporting energy ...

e-STORAGE to deliver 226 MWh DC of battery storage projects to ENGIE 

Canadian Solar’s majority-owned e-STORAGE will deliver 226 MWh DC of turnkey energy storage solutions to ...

COP28: NewLink’s pollution reduction project sets benchmarks

The Center for Environmental Education and Communications of Ministry of Ecology and Environment and Energy ...